IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 5509-5526

Application of material forces to hyperelastostatic fracture
mechanics. II. Computational setting

P. Steinmann *, D. Ackermann, F.J. Barth

Lehrstuhl fir Technische Mechanik, Universitat Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany
Received 6 July 2000; in revised form 29 September 2000

Dedicated to the occasion of the 60th birthday of Professor Dr.-Ing. D. Gross

Abstract

The concern of this work is a novel algorithmic treatment of hyperelastostatic fracture mechanics problems con-
sistent to the notion of material forces within the geometrically nonlinear setting of continuum mechanics. To this end,
we consider the continuum mechanics of material forces, as outlined in Part I of this work (P. Steinmann, Int. J. Solid
Struct. 37, 7371-7391), which act, contrary to the common physical forces, on the material manifold or rather in the
material space. In the sequel it is proposed to discretize the corresponding quasi-static balance of pseudo momentum by
a standard Galerkin finite element procedure. As a result we obtain global discrete node point quantities, the material
node point forces, which prove to be of the same qualitative and quantitative importance for the assessment of fracture
mechanics problems as the classical J-integral. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A number of computational strategies to compute quantities relevant to the assessment of fractured
configurations of hyperelastic materials have been proposed in the past. Relevant strategies based on the
finite element method may essentially be classified in the following categories:

Energy release rate methods: Based on the conceptual relation between the energy release rate and stress
intensity factors Parks (1974, 1977) and Hellen (1975) proposed to compute crack tip stress intensity factors
from the energy release rates associated with virtual crack extensions based on derivatives of linear elastic
finite element stiffness matrices. Later de Lorenzi (1982, 1985) improved the method of virtual crack ex-
tension by considering the energy release rates directly within a continuum. The aforementioned methods
differ in detail, nevertheless their common conceptual basis is the consideration of the energy changes
within a continuum upon (virtual) extension of the crack length.
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Contour integral methods: By the way of contrast, the numerical strategy applied e.g. by Shih and
Needleman (1984a,b) relies on the direct evaluation of the path-independent J-integral, commonly credited
to Rice (1968), by integrating the relevant quantities of the field solution obtained by solving the discretized
direct motion problem along prescribed integration contours. Clearly this procedure demands additional
data structures within a finite element post processor. Thereby two different options are available: either the
integration contour follows the element edges or the integration contour directly connects the quadrature
points of adjacent elements. In the first case additional projections from the quadrature points to the node
points, e.g. by smoothing based on a least square fit, are necessary.

Domain integral methods: The close relation between the familiar contour and a specific domain rep-
resentation of the J-integral has been exploited by Li et al. (1985) and Shih et al. (1986) to propose the so
called energy domain integral as a particular virtual crack extension method. Thereby, after the selection of
virtual node point quantities, which is reported to be uncritical, the solution obtained from the direct
motion problem can be used directly without the need for additional data structures to compute the value
of J. This very successful approach is implemented today as well in a number of commercial finite element
packages. The theoretical background for the energy domain integral was developed for more general
conditions by Moran and Shih (1987).

For any of the aforementioned strategies an appropriate mesh design is reported to be crucial for
accurate results pertaining to the assessment of the fracture mechanics problem, see e.g. Shih et al. (1986)
or Anderson (1995). Thereby, finite element designs which mimic the characteristic singularities of the
stress/strain fields in the vicinity of the crack tip turned out to render sufficiently accurate predictions.
Recall as the paradigm the quadratic S2-serendipity element with edge nodes moved to the quarter points
which captures the (/2 singularity typical for linear elastic scenarios. Nevertheless, in the nonlinear
regime the degree of the singularities is most often not known in advance and no particular recom-
mendation apart from using sufficiently refined meshes around the crack tip can be given under these
general conditions.

It is the objective of this work to propose a novel computational strategy for the assessment of hy-
perelastostatic fractured configurations which is equally applicable within the geometrically linear and
nonlinear setting. Thereby, we base our developments on the consequent exploitation of the concept of
material forces. Contrary to physical forces, material forces represent the tendency of defects like e.g.
cracks or inclusions to move relative to the ambient material. The necessary theoretical basis for the
present endeavour together with the notation and terminology are taken from Part I of this work
(Steinmann, 2001). An comprehensive treatment which promotes the concept of material forces based on
the consideration of material inhomogeneities in elasticity is presented in the milestone monograph by
Maugin (1993), see also the references therein. Based on our advocated approach we essentially aim in a
quantitative comparison with classical J-integral evaluations and in an investigation of the influence of
the discretization on the accuracy. Moreover we want to emphasize that the new method has the ad-
vantages that it requires no additional FE data structure, is extremely versatile, renders additional in-
dicators for the geometrical shape sensitivity of the specimen and renders additional indicators for the
mesh quality.

To this end, the paper is organized as follows: In Section 2 the relevant kinematic quantities and balance
laws pertaining to the common physical and its complementary material viewpoint are briefly reiterated.
Next, Section 3 develops the corresponding weak forms of the balance equations as the prerequisite for the
finite element discretization elaborated upon in Section 4. Here the discrete so-called material node point
forces are proposed for the assessment of fractured configurations of hyperelastic material. Then, based on
the introduced notation and terminology, Section 5 compares different methods in computational fracture
mechanics. Finally, Section 6 highlights the performance of the advocated material node point force
method for a number of geometrically linear and nonlinear examples. The conclusions in Section 7 close the

paper.
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2. Strong form of quasi-static balance equations

A detailed treatment of the formulation of the physical and material balance laws has been given for the
hyperelastostatic case in Part I of this work (Steinmann, 2001). Therefore we shall merely summarize the
relevant statements needed in the sequel.

In the direct motion description the placement x of a material particle in the current configuration 4 is
described by the nonlinear direct deformation map x = ¢(X) in terms of the placement X of the same
material particle in the reference configuration %,. Vice versa, in the inverse motion description the
placement X of a material particle in the reference configuration %, is described by the nonlinear inverse
deformation map X = ¢(x) in terms of the placement x of the same material particle in the current con-
figuration 4. The direct and inverse deformation gradients, i.e. the linear tangent maps associated to the
direct and inverse deformations, together with their determinants are denoted by F = Vy¢ and f = V, ¢
with J = det F and j = detf, respectively.

The physical and material quasi-static balance equations of linear and pseudo momentum pertaining to
the direct motion and inverse motion point of view, respectively, then follow as

—dive' =™ and — DivM' = B™ (1)

Here ¢ and M denote the spatial Cauchy and the material Eshelby stress which may be derived for the
hyperelastic case from the stored energy density %" or %~

6 =jorWo F =WI—f -0 and M'=Jo W -f =Wl —F - 0pW (2)

Obviously, the stored energy is defined either per unit volume in %, or per unit volume in 4%, i.e.
Wo=Wo(F;X)or W =W(f; X), respectively. Recall that the symmetry of ¢ is always mandatory due to
requirement of physical objectivity whereas the symmetry of M is optional only in the case of material
objectivity, i.e. for isotropic material. Finally, the right-hand sides of Eq. (1) are related by
B™ = —dy Wy — JF' - b°™. Thereby b™™ are the physical volume forces, e.g. gravity, and Oy %", denotes
the explicit material gradient of the stored energy density which is e.g. due to an inhomogeneous distri-
bution of material constants over %4,.

Remark 2.1. It shall be noted carefully that the vectorial residua of the quasi-static balances of physical and
pseudo momentum have components in either physical or material space, respectively. Moreover, please
recall that the quasi-static balances of physical and pseudo momentum serve for solving either the direct
motion problem or the inverse motion problem, respectively. Thereby, the inverse motion problem is
considered in a post processing computation since the material forces are only known a posteriori, i.e. when
the direct motion problem has already been solved.

3. Weak form of quasi-static balance equations

As a prerequisite for a finite element discretization advocated in the sequel we consider the quasi-static
balances of physical and pseudo momentum in their weak or rather variational form. The test functions w
and W take the interpretations as the physical and material virtual displacements, respectively, and are
assumed to satisfy the necessary smoothness and boundary requirements.

gsur — Sint _ Svol YV w (33)

M = Mint _ Mvol VYW (3b)
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Thereby the surface contributions denote the physical and material variation, respectively, of the total bulk
potential energy due to its complete dependence on the position in physical and material space, respectively,
and are defined as

Ssur:/ w-6'-nda and M™ = W.-M' NdA (4)
on

0%

For an account on the notion of physical and material variations please refer to Part I of this work
(Steinmann, 2001). Furthermore, the internal contributions denote the physical and material variation,
respectively, of the total bulk potential energy due to its implicit dependence on the position in physical and
material space, respectively, and are defined as

gint — / V.w:a6'do (5a)
MM :/ VW :M'dv (5b)
%o

Likewise, the volume contributions denote the physical and material variation, respectively, of the total
bulk potential energy due to its explicit dependence on the position in physical and material space, re-
spectively, and are defined as

Svol = / w-bPYdo and M= [ W.B™dr (6)
B

B

The particular energetic interpretations alluded to above for the different terms involved in the weak form
have been discussed in detail in Part I of this work (Steinmann, 2001).

Remark 3.1. A fundamental difference between the direct and the inverse motion description are the
Neumann boundary conditions. For the direct motion problem the physical boundary tractions are given
input data whereas for the inverse motion problem the material boundary tractions can only be computed
after the direct motion problem has been solved. Nevertheless this poses no difficulties since we consider the
inverse motion problem only in a post processing computation.

4. Discretized form of quasi-static balance equations

The variational formats of the quasi-static balances of physical and pseudo momentum in Egs. (3a) and
(3b) lend themselves readily for a straightforward Galerkin discretization.

To this end we discretize the domain in ny elements with %" = U %, and % = U, %,,. On each el-
ement the geometry in 4 and %, is interpolated from the positions x, and X, of the n,, nodes by shape
functions N”, with n € [1, n,,] denoting the local node numbering, as

xh

%e:iN"xn and X" ﬂOe:nzw:N”Xn (7)
n=1 n=1

The shape functions obey the completeness condition Y, N" = 1, the assembly of the elementwise ex-

n=

pansions renders a globally C°-continuous interpolation. Consequently, the deformation gradients on each
element follow immediately as
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5= X, @VyN" and V. X"|5=) X,®V.N"

n=1 n=1

V){xh

Next the elementwise discretization of the virtual physical and material displacement fields w and W into
nodal values w, and W,, which are interpolated by the same shape functions N” in the spirit of an iso-
parametric expansion, renders the representations

#=Y N'w, and W'|, => N'W, (8)
n=1

n=1

wh

The corresponding gradients appearing in Egs. (5a) and (5b) are thus given by

Nen Nen

Vo' 5= w, @ VN" and VyW' |y => W, VyN"
n=1 n=1

Then the discretized contributions to the physical and material virtual work follow as

Nel

Nel M| e|
Sml — E Sénl7 Svol — § S;/Ol and Mml — 2 1‘4;m7 Mvol — § MZOI (9)
e=1 e=1 e=1 e=1

with the elementwise expansions, e.g. for the internal and the volume contributions

Nen Nen

St = g w, / ¢ -V,N'dv and S = E w, / b N do
n=1 Be n=1 Be

Nen Nen

MM =>"W,- | M'-VyN"dV and M} = Z}W A B™'N"dV
n= #0e

n=1 Boe
Finally, considering the arbitrariness of the virtual physical and material node point displacements w, and
W ., we propose to compute global discrete physical and material node point forces as

e=1

Frivacd — A / [6' - V.N"— b*™N"]dv (10)

e

Fmal‘nod = A / [Mt X VXNn _ Bmath]dV
Boe

e=1

In conclusion of the above considerations the discrete physical and material node point forces are thus
energetically conjugated to variations of the physical and material node point positions. Moreover, the
computation of the material node point forces involves the same operations as the computation of the
physical node point forces which are already available for the solution of the direct motion problem and do
therefore not contribute significantly to the overall computational costs.

Remark 4.1. It should be recalled that the discretized version of the quasi-static balance of physical mo-
mentum is used to solve the direct motion problem for given data contained in S** and S*°'. Then, the
discretized version of the quasi-static balance of pseudo momentum is used in a post processing compu-
tation to evaluate the material node point forces from M™ and M a posteriori.

Remark 4.2. It is interesting to note that the finite dimensional discrete physical and material node point
forces preserve the properties of the corresponding balance equations of the underlying infinite-dimensional
continuous setting which are discussed in detail in Part I of this work (Steinmann, 2001).
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As an example the quasi-static equilibrium of physical and material forces is trivially satisfied ele-
mentwise due to the completeness condition Y ', N” = 1. As a consequence of the completeness condition
constant fields render zero gradients with > ', VN" =V "', N" = 0. For a verification it suffices to
consider the internal contributions, e.g. to the discrete node point forces, of one element only

> / ¢ -V.N'dv=0 and > [ M'-VyN"dV =0

=i /%

n=1  %oe

5. Comparison of alternative methods

In the sequel we compare alternative methods to compute the J-integral which was introduced to
fracture mechanics by Rice (1968). Due to its definition as being energetically conjugated to crack exten-
sions and its property of being path-independent the J-integral enjoys utmost popularity as a well-suited
measure to assess fractured specimen.

To this end we consider an arbitrary subdomain 7"y of the reference configuration %,. Thereby, the
boundary 077 is assumed to be decomposed into a regular and a singular part 0¥y = 07", U077, with
0 =077, Nd77,. Then the singular part of 07" denotes a crack tip with the unit vector ¢| pointing into the
possible crack extension direction.

5.1. Contour integral method

The contour integral method was applied e.g. in the works of Shih and Needleman (1984a,b) among
others. This method directly evaluates the line/surface integral as given by the J-integral along the regular
part 077, of the contour 07"y = 077, U 07" with ) = 07", N 077. Thereby, the J-integral reads e.g. in its
scalar representation for the path independent case

JZ/ eH-Mt'NdA (11)
o7

Here two different options are conceptually possible: either (a) the integration contour follows the element
edges or (b) the integration contour directly connects the quadrature points of adjacent elements. Besides
the computationally attractive theoretical independence of the results with respect to the integration
contour this method has the drawbacks that it (i) requires additional FE data structure, (ii) leads to a
possible loss of accuracy due to the numerical quadrature along the integration contour and (iii) involves
additional overhead computations e.g. for the computation of the unit normal vector to the integration
contour. The computational steps pertaining to the contour integral method are listed in Table 1.

Table 1
Computational steps for the contour integral method

(1) Select integration contour

(a) along element edges

(b) along quadrature points
(2) Compute Eshelby stress at quadrature points

(a) Project Eshelby stress to node points
(4) Compute unit normal vector to integration contour
(5) Compute Eshelby traction at integration contour
(6) Integrate Eshelby traction along integration contour
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5.2. Domain integral method

The domain integral method was proposed in the works by Li et al. (1985) and Shih et al. (1986).
Starting point for the domain integral method, which we shall review here for the materially homogeneous
case only, is the definition of the scalar J-integral based on the singular part 077, of the contour
0779 =07, U0y, with ) =07, N7,

J:—/ e”«M‘-NdA (12)
077

With the introduction of a sufficiently smooth function, say W € H'(77), which takes the value one on
077, and zero on 07", we obtain

1 on 077

J:—/ We -M'-Nd4 = — 7 13
v Tor ” 0 on 077 (13)

W-M'-Nd4 with W:{

A

Next, due to the assumed smoothness of W we may apply the divergence theorem and partial integration and
upon taking into account the assumed homogeneity, which manifests itself in DivM"' = 0, we end up with

J:—/ {VXW:M‘—FW-DiVM‘}dV:—/ VW MdY (14)
70 70

Finally, a standard Galerkin discretization of the preselected integration dgmain nto 7 glements with
¥t = U, %y, and the selection of prescribed virtual material displacements W"* = 3" N"W, renders the
algorithmic version of the domain integration method as proposed by Li et al. (1985)

T Hen
J:—ZZWn- ; M' -V yN"dV (15)
e= n= #0e

Besides the usual sensitivity of the results with respect to the mesh design this method has the advantages that
it (i) requires no additional FE data structure, (ii) is extremely versatile, (iii) is insensitive to the actual se-
lection of the prescribed virtual material displacement and (iv) is insensitive to the actual selection of the
integration domain. The computational steps pertaining to the domain integral method are listed in Table 2.

Table 2
Computational steps for the domain integral method

(1) Select integration domain

(2) Prescribe virtual crack extension

(3) Compute Eshelby stress at quadrature points
(4) Perform standard numerical quadrature

5.3. Material force method

Finally, the material force method advocated in this contribution might be summarized for the mate-
rially homogeneous case as follows

Pt = A [ Mt vy (16)
= J A0,

Obviously, comparing Egs. (15) and (16) it turns out that the material force method is intimately related to
the domain integral method of Li et al. (1985). But, whereas the domain integral methods solely computes a
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scalar energetic quantity associated with a configurational change, the material force method determines
the vectorial force-like quantities conjugated to that configurational change. Clearly, vectorial quantities
carry more information than scalar ones.

On the one hand, in the case of a singularity, e.g. for a crack, the length of the material force in the
direction of the possible crack extension corresponds to the value of the J-integral. On the other hand we
do not expect any discrete material forces in an otherwise homogeneous material. The presence of such
spurious material forces indicates that a change of the node point positions of the discretization renders an
improved mesh with less potential energy content, see also the reasoning by Braun (1997).

Finally, due to the interpretation of material forces as being energetically conjugate to configurational
changes, discrete material forces at the boundary may be considered as a measure of the shape sensitivity of
a specimen.

Thus, in anticipation of the results obtained in the next section, we may thus state that besides the usual
sensitivity of the results with respect to the mesh design this method has the advantages that it (i) requires
no additional FE data structure, (ii) is extremely versatile, (iii) renders additional indicators for the geo-
metrical shape sensitivity of the specimen and (iv) renders additional indicators for the mesh quality. The
computational steps pertaining to the material force method are listed in Table 3.

Table 3
Computational steps for the material force method

(1) Compute Eshelby stress at quadrature points
(2) Perform standard numerical quadrature

Thus the method simply consists in the determination of the material node point forces corresponding to
the Eshelby stress which are trivially computable after the direct motion problem has been solved. It will be
demonstrated in the sequel that these material node point forces may effectively be used for the assessment
of fractured configurations of hyperelastic material.

6. Examples

In this section we focus on the computational performance and versatility of the proposed material force
method. To this end we first reinvestigate the classical interface problem in a hyperelastic bi-material bar in
one dimension in order to emphasize the relevant concepts of our approach. In the sequel, we study the
results obtained with the material force method with those obtained from the classical J-integral evaluation
for some standard fracture mechanics specimen in the geometrically linear setting. Moreover we focus on
the influence and the delicate implications of the mesh design on the results obtained. Next we compare the
results from the geometrically linear treatment with those of a fully geometrically nonlinear computation
for the example of a single edge notched specimen in tension (SET). Here we emphasize the intuitively
obvious result that the consideration of geometrically nonlinear effects leads to reduced loading by material
forces due to the blunting of the crack tip. Finally, as an outlook to further investigations, we highlight the
applicability of the proposed method to other types of singularities as present in wedged specimen and to
defect configurations like soft and rigid inclusions.

6.1. Hyperelastic bi-material 1D bar in tension
This example is intended to illustrate on the one hand the aforementioned material quantities and to

illuminate on the other hand the proposed finite element approach to compute discrete material node point
forces. The elementary linear theory of beams has been analyzed within the framework of material forces



P. Steinmann et al. | International Journal of Solids and Structures 38 (2001) 5509-5526 5517

s

)
Y

o 1l - «o

Fig. 1. Hyperelastic bi-material 1D bar in tension.

extensively by Kienzler and Herrmann (1986a,b) and Kienzler (1986). Here we shall consider the even
simpler problem of a bi-material hyperelastic bar under tension in Fig. 1, nevertheless for the more general
geometrically nonlinear case. The bar has unit length and is discretized by two 1D finite elements. One part
of the bar with length o consists of an arbitrary hyperelastic material 1 while the remaining part of the bar
with length 1 — a consists of an arbitrary hyperelastic material 2. Due to physical equilibrium the Cauchy
stress ¢ in the bar is constant, moreover the stretches in both parts of the bar are constant and can be
evaluated conceptually by the inversion of the hyperelastic constitutive laws

g = 6[//01 = 6;,“//02 = 07 = }vl = [0'1 (;Ll)]_l and /lz = [02(12)}_1
Then constant Eshelby stresses in the two parts of the bar follow as
M1 = "///01 — )vl()' and M2 = "///02 — )QO'

Within a finite element discretization constant Eshelby stresses in 1D render the material node point forces
at the element level as

[ vax] <t = mi oo
Boe )

Here we exploited the property of the shape functions N"(&,,) = J,,, whereby & = 1 denote the isopara-
metric coordinates at the beginning and the end of a 1D element.

Based on these intermediate results the material node point force at the interface of the two materials
is computed after the assembly of the discretized element contributions with [ e | denoting the jump
[o]; — [o], as

Fmat‘nod _ H:WOH o [[;LHO'

For an interpretation of this quantity we first compute the material sensitivity of the stretches from the total
elongation between the ends of the bar, i.e. the sensitivity at fixed deformed configuration which is con-
sistent with our theoretical set up in Part I of this work (Steinmann, 2001)

u=ho+Ab[l—a-1 = Ju=20,4ho+ 5[l —a+[1]da=0

Then the material variation, i.e. the variation at fixed deformed configuration, of the total stored energy
follows as

W = W()dX =W oo+ Woz[l — OC] = 50(W = 50([[[%0]} — [)L]O']
Boe
Remarkably, we obtain formaly exactly the same result for J, W if we allow for a less abstract d,u # 0, i.e. if
we allow the deformed configuration to change due to the change of the undeformed configuration, and
thus consider additionally the change of the external potential energy. In conclusion, in view of the
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definition of the material node point force at the interface, F™"°d is interpreted as energetically conjugated
to a variation oo of the position of the bi-material interface. A similar expression for the material force
acting on an interface has been derived via different arguments e.g. by Hill (1986).

6.2. Geometrically linear specimen with crack

Next, we consider SET, double edge notched (DET) and center cracked (CCT) fracture mechanics
specimen in tension with plane strain constraint. The height to width ratio is H/W = 3/1, the ratio of the
crack length to the width is a/W = 1/2, the specimen has unit width. The specimen are discretized by bi-
quadratic S2-serendipity elements, the mesh is heavily densified around the crack tip. Moreover the ele-
ments at the crack tip are degenerated into triangles with the midside nodes on those edges emanating
radially from the crack tip shifted to the quarter point positions. It is known that by this modification of the
original element set-up the »~(!/?) singularity in the strains and stresses typical for geometrically linear
elasticity is nicely captured. The material is modelled by isotropic linear Hooke elasticity with Young’s
modulus £ = 206.9 x 10° N/mm? and Poisson’s ratio v = 0.29 corresponding roughly to a steel. A constant
distributed tensile load of 10 N/mm? is applied at the top surface, the lateral movement of the nodes at the
top and bottom surface are unconstrained.

The computed discrete material node point forces are depicted in Fig. 2 together with a zoom of the
typical scenario at the crack tip. Thereby material forces point into the direction of a potential energy

.,

Fig. 2. Discrete material node point forces for the geometrically linear SET, DET & CCT specimen. Material forces point into the
direction of potential energy increase upon replacement of the material node point position.
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Fig. 3. Discrete material node point force at the crack tip over the amount of loading. The quadratic dependence is typical for linear
elasticity with a stored energy quadratic in the displacement gradients.

increase upon replacement of the material node point position. Thus the growth of the crack in the di-
rection opposite to the material force, i.e. the replacement of the material position of the crack tip node
point that enlarges the crack length, corresponds to a decrease of the potential energy. Please note that we
observe additional small material forces at the boundaries of the specimen indicating that the potential
energy content of the specimen will also change if the initial geometry of the specimen is changed. This is
obviously an additional information that is not provided by any other computational method described
above. Next, Fig. 3 displays the quadratic dependence of the discrete material node point force at the crack
tip on the amount of loading as typical for linear elastic problems.

Moreover Table 4 summarizes the comparison of the discrete material node point forces with reference
values for the classical J-integral which are taken from Rooke and Cartwright (1976). It is remarkable that
the results obtained with the material force method as proposed in this contribution differ only slightly from
the reference results, i.e. the maximum deviation is less than 2%.

Next, we investigate the sensitivity of the results with respect to the mesh design. It may be shown that an
optimal result in the sense of representing the correct singularity in the strains and stresses is obtained if the
S2-elements at the crack tip are degenerated into triangles with the midside nodes on those edges emanating
radially from the crack tip shifted to the quarter point positions with »/L = 0.25. In this case the typical
r~(1/2) singularity in the strains and stresses is exactly captured. Therefore we study the influence of shifting

Table 4
Comparison of discrete material node point forces with analytical values for the J-integral
Specimen type % table (?"’;;;) code Deviation (%)
SET 8.079 7.978 1.253
DET 1.392 1.367 1.777
CCT 1.382 1.408 1.868

The maximum deviation is less than 2%.
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Fig. 4. Variation of normalized discrete material node point forces with placement of element edge node point of innermost ring of
elements. The sensitivity of the results is less than 17%.

the edge nodes of the innermost ring of elements to positions different from this optimal case. The resulting
normalized discrete material node point forces for the SET specimen are displayed against the midside node
point position in Fig. 4. It can be observed that the exact value is obtained for /L = 0.25. Already slight
deviations from this position render pertubations of the correct result. Nevertheless it appears that for
reasonable placement of the midside node in the range r/L € [0.25,0.50] the deviation is less than 17%.
Finally, the resulting spatial distribution of discrete material node point forces in the vincinity of the
crack tip are displayed in Fig. 5 for the cases r/L = 0.245,0.250,0.255,0.500. Remarkably, nonoptimal
discretizations are indicated by small spurious material forces at internal node points which show up be-
sides the dominant material force at the crack tip. These spurious material forces exceed the tolerance used
for the residuum of the direct motion problem and are not to be confused with the noise due to round-off
errors which always renders nodal values in the order of the machine precision. Thus the material force
method renders additional informations about the quality of the discretization. Interesting enough, related
observations constitute the underlying motivation for the node point relocation method as advocated by
Braun (1997) which aims in an optimal node point distribution at fixed mesh topology such that spurious
material forces are minimized. Thus, as a rule, the optimal discretization is characterized by a minimum of
spurious material forces. Nevertheless, summing up the spurious material forces renders a value that
slightly improves upon the material force at the crack tip with regard to the value of the J-integral.

6.3. Geometrically nonlinear specimen with crack

In the following example we study the influence of a geometrically nonlinear treatment. To this end we
consider a plane strain SET specimen in tension with geometry and discretization as in the previous ex-
ample. The material is modelled by isotropic nonlinear quasi-incompressible Neo-Hooke elasticity based on
the stored energy function # o = 0.5u[l; — 3] — ulnJ +0.5[InJ]> with Young’s modulus E = u[3}+
2/ + 1) = 50 x 10*° N/mm? and Poisson’s ratio v =0.51/[%+ u] = 0.45 corresponding roughly to a
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Fig. 5. Zoom of the crack tip vicinity showing additional spurious discrete material node point forces if the discretization does not
caputure exactly the correct singularity.

rubber. A constant elongation of 16.6% is applied incrementally by prescribed displacements at the top
surface, the lateral movement of the nodes at the top and bottom surface are unconstrained.

The computed discrete material node point forces at the end of the load history are depicted in Fig. 6(b)
together with a zoom of the typical scenario at the crack tip. Obviously, besides the single material force at
the crack tip, a number of spurious material forces are present that indicate indirectly that the type of
singularity of the solution has changed with respect to the geometrically linear solution. In fact, due to the
blunting of the crack tip, the resulting stress intensity appears to be less critical.

This is clearly demonstrated by elongating the specimen without taking into account the geometrical
nonlinearities. Thus the typical »~(/? singularity is present in the strains and stresses. Since it is exactly
captured by the discretization invoked, no spurious material forces are visible in Fig. 6(a). Please note that
the material forces in Fig. 6(a) and (b) are scaled similarly.

Along the same lines, Fig. 7 displays the dependence of the discrete material node point force at the
crack tip on the amount of loading in comparison with the geometrically linear case. Thereby, the material
force is normalized with respect to the material force of the geometrically linear solution. In the initial
loading phase geometrical stiffening effects seem to prevail but with increased loading a clear drop of the
normalized material force is observable, thus indicating again a less critical stress intensity in comparison
with the geometrically linear solution.
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a b

Fig. 6. (a) Discrete material node point forces for the geometrically linear SET specimen at 16.6% elongation. No spurious material
forces are present since the type of singularity is exactly captured. (b) Discrete material node point forces for the geometrically
nonlinear SET specimen at 16.6% elongation. Spurious material forces indicate indirectly that the type of singularity has changed w.r.t.
the geometrically linear case.

6.4. Geometrically linear specimen with wedge

Next, we investigate how the discrete material node point forces are quantitatively influenced by varying
the singularity in the strains and stresses for the geometrically linear case. To this end we consider specimen in
tension with a wedge and plane strain constraint, whereby we vary the opening angle of the wedge in the
range 0°, 30°, 60°, 90°. For a wedged configuration the singularity in strains and stresses varies between 7~
at an opening angle of f = 0°, i.e. for a crack, and ~r~"%% at an opening angle of # = 90°. These results are
taken from suited solutions of the analytical eigenvalue equation sin(2nd — [1 + 1]8) — [A+ 1]sin =0 in
terms of the exponent #* and the opening angle . The geometry and the discretization are the same as in
the previous examples, whereby only the wedge is cut out of the mesh. The material is modelled again by
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Fig. 7. Discrete material node point force at the crack tip over the amount of loading.

Fig. 8. Discrete material node point forces for the geometrically linear specimen with wedge [30°,60°,90°]. It appears that material
forces scale with the opening angle.
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Fig. 9. Discrete material node point forces for the geometrically linear specimen with wedge contrasted to the type of singularity. It
appears that material forces scale nonlinearily with the type of singulartity.

isotropic linear Hooke elasticity with Young’s modulus £ = 206.9 x 10°* N/mm? and Poisson’s ratio v = 0.29
corresponding roughly to a steel. A constant distributed tensile load of 10 N/mm? is applied at the top
surface, the lateral movement of the nodes at the top and bottom surface are unconstrained.

The computed discrete material node point forces are depicted in Fig. 8 together with a zoom of the
typical scenario at the wedge tip. The quantitative change of the material forces with the type of singularity is
clearly visible, see also Fig. 9. From these results it appears that the discrete material node point forces are a
similar measure as the stress intensity at the wedge tip. Similar to the previous examples, we observe again
spurious small material forces inside the domain in the vicinity of the wedge tip. Thus, as a interpretation, a
non optimal mesh design is indicated by the material force method. Nevertheless, strategies of how to adapt
meshes in order to minimize spurious material forces are not in the scope of the present investigation.

6.5. Geometrically linear specimen with inclusion

Finally, we consider specimen with a circular inclusion in tension with plane strain constraint. Thereby,
no singularities are present in the solution, thus the precise mesh design is less delicate. The geometry and
the discretization are the same as in the previous examples, whereby the ratio of the inclusion radius to the
specimen width is R/W = 0.1. The bulk material is modelled by isotropic linear Hooke elasticity with
Young’s modulus £ = 206.9 x 10° N/mm? and Poisson’s ratio v = 0.29 corresponding roughly to a steel.
For the soft inclusion, the Young’s modulus is approximately set to £ ~ 0, the rigid inclusion is modelled
by setting the Young’s modulus approximately to E ~ cc. A constant distributed tensile load of 10 N/mm?
is applied at the top surface, the lateral movement of the nodes at the top and bottom surface are un-
constrained.

The computed discrete material node point forces for the soft and the rigid inclusions are depicted in Fig.
10 together with zooms of the typical scenario at the inclusion. Here, discrete material node point forces
mark the interface between the inclusion and the bulk material. Recall that material forces point into the
direction of a potential energy increase upon replacement of the material node point position. Thus for the
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Fig. 10. Discrete material node point forces for the geometrically linear specimen with inclusion. Material forces point into the di-
rection of potential energy increase upon replacement of the material node point position.

soft inclusion the growth of the inclusion into an ellipsoid and for the rigid inclusion the shrinkage of the
inclusion into an ellipsoid, i.e. a morphology change in the direction opposite to the material force, cor-
responds to a decrease of the potential energy content of the specimen. The equilibrium shape of inclusions
has been considered numerically by an alternative strategy by Schmidt and Gross (1995, 1997). Obviously,
the discrete material node point forces computed by the present proposal may be considered as the driving
forces for the kinetics of morphology changes.

7. Conclusions

The objective of this work was to exploit the concept of material forces as advocated by Maugin (1993)
to develop a novel algorithmic treatment of problems within hyperelastostatic fracture mechanics. To this
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end, the so-called balance of pseudo momentum in the material manifold is recast in weak form, cf. to Part
I of this work (Steinmann, 2001). This variational statement then lends itself in a straightforward manner to
a standard Galerkin type finite element discretization. Thereby, the discrete material node point forces take
the interpretation as being energetically conjugated to variations of the material node point positions. It is
remarkable from the implementational point of view that the computation of the discrete material node
point forces involves only operations which are already available for the solution of the direct motion
problem. Thus the conceptual beauty of material forces is accompanied by an extremely simple imple-
mentation which makes the advocated approach favorable in comparison with alternative methods.

The examples clearly demonstrated that for fracture mechanics problems the discrete material node
point forces at the crack tip coincide with the celebrated J-integral. Nevertheless, the examples emphasized
moreover that material forces render a number of additional informations, namely (i) on the energetic
sensitivity of the specimen geometry and (ii) on the discretization quality. These aspects are up to now not
fully exploited and will therefore constitute an area of further research. Moreover, the present approach is
applicable to general problems of defect mechanics. This additional potential was highlighted for the case
of specimen with interfaces, wedges or inclusions. Again the systematic investigation of these aspects is in
the focus of our future research. Finally the extension to inelastic material response, coupled fields and in
general the kinetics of defects is certainly within the realm of the conceptual potential of material forces.
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